Skew Littlewood–Richardson Rules from Hopf Algebras

نویسندگان

  • Thomas Lam
  • Aaron Lauve
  • Frank Sottile
چکیده

We use Hopf algebras to prove a version of the Littlewood–Richardson rule for skew Schur functions, which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood–Richardson rules for Schur P and Q-functions and noncommutative ribbon Schur functions, as well as skew Pieri rules for k-Schur functions, dual k-Schur functions, and for the homology of the affine Grassmannian of the symplectic group. Résumé. Nous utilisons des algèbres de Hopf pour prouver une version de la règle de Littlewood–Richardson pour les fonctions de Schur gauches, qui implique une conjecture d’Assaf et McNamara. Nous établissons également des règles de Littlewood–Richardson gauches pour les P et Q-fonctions de Schur et les fonctions de Schur rubbans non commutatives, ainsi que des règles de Pieri gauches pour les k-fonctions de Schur, les k-fonctions de Schur duales, et pour l’homologie de la Grassmannienne affine du groupe symplectique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 9 SKEW LITTLEWOOD - RICHARDSON RULES FROM HOPF ALGEBRAS

Assaf and McNamara [1] recently used combinatorics to give an elegant and surprising formula for the product of a skew Schur function by a complete homogeneous symmetric function. Their paper included an appendix by one of us (Lam) with a simple algebraic proof of their formula, and also a conjectural skew version of the Littlewood-Richardson rule. We show how these formulas and much more are s...

متن کامل

Symmetric Skew Quasisymmetric Schur Functions

The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...

متن کامل

Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions

The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...

متن کامل

Skew Quasisymmetric Schur Functions and Noncommutative Schur Functions

Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...

متن کامل

Hopf Algebras in Combinatorics (version Containing Solutions)

Introduction 5 1. What is a Hopf algebra? 7 1.1. Algebras 7 1.2. Coalgebras 8 1.3. Morphisms, tensor products, and bialgebras 9 1.4. Antipodes and Hopf algebras 13 1.5. Commutativity, cocommutativity 20 1.6. Duals 22 2. Review of symmetric functions Λ as Hopf algebra 28 2.1. Definition of Λ 28 2.2. Other Bases 30 2.3. Comultiplications 34 2.4. The antipode, the involution ω, and algebra generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009